The Spectrum of Schrödinger Operators and Hodge Laplacians on Conformally Cusp Manifolds

نویسنده

  • SYLVAIN GOLÉNIA
چکیده

We describe the spectrum of the k-form Laplacian on conformally cusp Riemannian manifolds. The essential spectrum is shown to vanish precisely when the k and k − 1 de Rham cohomology groups of the boundary vanish. We give Weyl-type asymptotics for the eigenvalue-counting function in the purely discrete case. In the other case we analyze the essential spectrum via positive commutator methods and establish a limiting absorption principle. This implies the absence of the singular spectrum for a wide class of metrics. We also exhibit a class of potentials V such that the Schrödinger operator has compact resolvent, although V tends to −∞ in most of the infinity. We correct a statement from the literature regarding the essential spectrum of the Laplacian on forms on hyperbolic manifolds of finite volume, and we propose a conjecture about the existence of such manifolds in dimension four whose cusps are rational homology spheres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SPECTRUM OF k-FORM SCHRÖDINGER LAPLACIANS ON CONFORMALLY CUSP MANIFOLDS

We describe the spectrum of the k-form Laplacian on conformally cusp Riemannian manifolds. The essential spectrum is shown to vanish precisely when the k and k − 1 de Rham cohomology groups of the boundary vanish. We give Weyl-type asymptotics for the eigenvalue-counting function in the purely discrete case. In the other case we analyze the essential spectrum via positive commutator methods. We...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

EXISTENCE OF BOUND STATES FOR LAYERS BUILT OVER HYPERSURFACES IN Rn+1 CHRISTOPHER LIN AND ZHIQIN LU

In their study of the spectrum of quantum layers [6], Duclos, Exner, and Krejčǐŕık proved the existence of bound states for certain quantum layers . Part of their motivations to study the quantum layers is from mesoscopic physics. From the mathematical point of view, a quantum layer is a noncompact noncomplete manifold. For such a manifold, the spectrum of the Laplacian (with Dirichlet or Neuma...

متن کامل

Introduction to Hodge Theory

This course will present the basics of Hodge theory aiming to familiarize students with an important technique in complex and algebraic geometry. We start by reviewing complex manifolds, Kahler manifolds and the de Rham theorems. We then introduce Laplacians and establish the connection between harmonic forms and cohomology. The main theorems are then detailed: the Hodge decomposition and the L...

متن کامل

Harmonic, Monogenic and Hypermonogenic Functions on Some Conformally Flat Manifolds in R arising from Special Arithmetic Groups of the Vahlen Group

This paper focuses on the development of harmonic and Clifford analysis techniques in the context of some conformally flat manifolds that arise from factoring out a simply-connected domain from Rn by special arithmetic subgroups of the conformal group. Our discussion encompasses in particular the Hopf manifold S × S, conformally flat cylinders and tori and some conformally flat manifolds of gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008